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LE'ITER TO THE EDITOR 

Directed lattice animals and the Lee-Yang edge singularity 

John L Cardy 
Department of Physics, University of California, Santa Barbara, California 93 106, USA 

Received 3 August 1982 

Abstract. The exponents vL, y of directed animals in d dimensions are shown to equal 
those for the Lee-Yang problem in d - 1 dimensions. For d = 2 we obtain the exact results 
v L  = 8 = 4, and for d 6 7 the scaling relation 8 = (d - l)vl. 

The problem of directed lattice animals has attracted recent theoretical attention 
(Redner and Yang 1982, Redner and Coniglio 1982, Dhar er ul 1982, Day and 
Lubensky 1982). In this letter we point out that this problem, when formulated in 
field-theoretic terms, is equivalent to the critical dynamics of an Ising model in an 
imaginary field, the so-called Lee-Yang problem (Fisher 1978). The theory of dynamic 
critical phenomena then implies that the exponents v L  and y of directed animals are 
the static exponents of the Lee-Yang problem in one less dimension. For d = 2, this 
implies the exact results vA = f, y = 2 and 8 = 2 - y = f, in agreement with numerical 
results (Redner and Yang 1982, Dhar et ai 1982). Since there is only one independent 
exponent in the Lee-Yang problem, we may also infer a scaling relation 8 = (d - 1 ) ~ ~ .  
In addition, Parisi and Sourlas (1981) have shown that the exponents for the Lee-Yang 
problem in d - 1 dimensions are the same as those for undirected animals in d + 1 
dimensions. We therefore have an interesting correspondence between these three 
models. 

We first rederive the field theory of directed animals (Day and Lubensky 1982) in 
a systematic way, using a method similar to that employed for directed percolation 
(Cardy and Sugar 1980). Consider a lattice with a preferred direction (labelled by rll) 
with respect to which bonds are oriented. Introduce commuting pseudospins a (r), 
d ( r )  at each site r, which satisfy the algebra a * =  a, d 2 = 0 ,  and an operation Tr 
satisfying Tr a = 0, Tr d = Tr da = 1. The expression 

3 

@ ( x )  =Trd(O) n {l+xa(r')a(r)} 
(r,rO 

where the product is over all directed nearest-neighbour pairs (r-r ' )  gives the 
generating function X , A ( n ) x " ,  where A(n) is the number of directed animals, with 
no closed loops, rooted at r = 0. To convert (1) into a field theory we exponentiate 
the expression in braces and write this as a Gaussian integral: 
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The operation Tr can now be performed. In the continuum limit we obtain a field 
theory whose action is 

A[& $I ]=  -1 ddr [x-'$V-'$ +h(l +i~,Ge")] (3) 

2 where the Fourier transform of V-' is ?' = bo+ib1qll+b2qL+. . .. If we now shift 
the fields according to $ = q5 +constant, & = 6, to remove the linear term in 4, and 
expand in 4 , $  the action has the form 

(4) 

where the ci are complicated functions of x ,  and we have kept only the most relevant 
terms. This expression is of the form written down by Day and Lubensky (1982). 

Consider now a continuous spin Ising model in an imaginary field with Hamiltonian 

H[$] = I dd-'r [:(a,$)2 + + + ih$]. (5  1 

The dynamics of this model, as given by the Langevin equation 

4 = -raH/a$ + 7 (6 )  
where 7) is a random noise, may be expressed in terms of a dynamic functional (Martin 
et a1 1972) 

where we have introduced a response field 4 and identified 'time' with rll. If we now 
remove the linear term in 3 as above, and keep only relevant terms, we get an action 
of the form (4) with c 2  = r. 

The response function ($(r)&(O)) is just the function GJ,  introduced by Day and 
Lubensky (1982). From the general theory of dynamics, GG,(ql, 411 = 0) must equal 
the static correlation function of the Hamiltonian (5). Therefore the exponents y and 
vL, defined by G,-,(q, = q = 0)a Ix  -x,I-' and [,OCIx - x , \ - " ~ ,  are those of the Lee- 
Yang problem ( 5 ) ,  in d - 1 dimensions. 

For the Ising model in d = 1, with exchange interaction J and external field ih, 
the free energy per site f and the correlation length are respectively 

f =  -In A + ,  [ = [ln(A+/A-)]-' (8) 
where 

A, = eJ cos h *(e-*' -ezJ sin2 h)'12. (9) 
1 From this we conclude that v l  = 5, y = 4, giving the results quoted in the abstract. 

Since the free energy for the Lee-Yang problem scales as ( h  - /I,)'+- with 1 + U  = 8 = 
2 - y, by hyperscaling (Fisher 1978) the correlation length scales as ( h  - hc)-(*+g)'(d-') .  
This gives the second scaling relation. We conclude by displaying the full set of 
relations for both ordinary animals (Parisi and Sourlas 1981) and directed animals: 

(10) 

(11) 

Ordinary: e(d )  = 2 + u ( d  -2) = 1 + ( d  - 2lU(d), 

eD(d) = 1 + ~ ( d  - 1) = (d  - 1)vLD(d), Directed: 
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from which we see that v lD(d)  = v(d + 1). The critical exponent VI( of directed animals 
requires knowledge of the dynamics of the Lee-Yang problem. This appears non- 
trivial, even in one dimension. 

In table 1 we test the relations (11) against numerical work on the Lee-Yang 
problem and directed animals. Although the results on the latter have sizeable quoted 
errors, there appears to remain significant discrepancies in d = 3 and 4, which we do 
not at present understand. The relations are correct at d = 2 and to first order in the 
(7 -d) expansion (Day and Lubensky 1982, Fisher 1978). 

Table 1. Test of scaling relations 8 = 1 + u ( d  - 1) = (d - 1 ) ~ ~ .  

1 + o ( d  - l), Lee-Yang Directed animals 
d Series' E expansionb eC (d - 1)~~' (d - l)vLd 

2 0.5' 0.507f0.01 0.53 f 0.01 0.500 i 0.003 0.56 
3 0.837f0.003 0.845f0.01 0.94 f 0.02 0.90f0.01 0.90 
4 1.086 f 0.015 1.085f0.005 1.20rt0.05 1.20i0.06 1.13 
5 - 1.264f0.002 1.35 i0.15 1.56i0.16 1.29 
6 - 1.399f0.001 1.40 i 0.15 1.75f0.25 1.41 
7 - 1.5' 1.43 f 0.15 2.10f 0.48 1.50 

* Kurze and Fisher (1979). 
Bonfim et al (1981) (quoted errors reflect the spread in different extrapolations). 
Redner and Yang (1982). 
Flory approximation: Redner and Coniglio (1982). 

e Exact. 

I wish to thank the University of Washington for hospitality while this work was 
initiated. It was supported by NSF Grant No 80-18938 and an Alfred P Sloan 
Foundation Fellowship. 

Note added. After this work was completed, I heard that F Family had derived the hyperscaling relation 
f3 = (d - l)v, on general grounds. Also, H E Stanley, S Redner and Z-R Yang have independently proposed 
the relation OD = 1 + u(d - 1) and confirmed this numerically. I thank the above for communicating their 
results to me. 
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